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Abstract

Non-similar solution of an unsteady mixed convection flow over a vertical cone in the presence of surface mass transfer has been
obtained when the axis of the cone is inline with the flow. The time dependent free stream velocity varying arbitrarily with time intro-
duces unsteadiness in the flow field. The results have been obtained for accelerating and decelerating free stream velocities. The numerical
difficulties arising at the starting point of the stream wise coordinate and for time dependent flow field are overcome by applying an
implicit finite difference scheme in combination with the quasilinearization technique. Numerical results are reported here to account
the effects of Prandtl number, buoyancy and mass transfer (injection and suction) parameters at different streamwise locations for various
times on velocity and temperature profiles, and skin friction and heat transfer coefficients.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

In many practical circumstances unsteady mixed con-
vection flows do not necessarily admit similarity solution
and during the last two decades, a wide range of problems
have appeared that demand detailed analysis of unsteady
mixed convection flows which necessitates taking non-
similarity into account. The unsteadiness and non-similar-
ity in such flows may be due to free stream velocity or due
to curvature of the body or due to surface mass transfer
(suction or injection), or even possibly due to all these
effects. The inherent mathematical difficulties involved in
obtaining non-similar solutions for such problem enforced
most investigators to confine their studies either to steady
non-similar flows or to unsteady semi-similar or self-similar
flows [1–7].

Convective heat transfer in unsteady flows over a sta-
tionary cone is important for the thermal design of various
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types of industrial equipments such as heat exchanger, con-
isters for nuclear waste disposal, nuclear reactor cooling
system and geothermal reservoirs etc. In an early study,
Heiring and Grosh [1] investigated the practical case of
steady mixed convection from a vertical cone for
Pr = 0.7. They made use of a similarity transformation
which shows ðGrx

Re2
x
Þ is the dominant dimensionless parameter

that would categories the three regions, namely forced, free
and mixed convection. In a further study, Himasekhar
et al. [2] found the similarity solution of the mixed convec-
tion flow over a vertical rotating cone in an ambient fluid
for a wide range of Prandtl numbers. Wang [3] has
obtained a similarity solution of boundary layer flows on
rotating cone, discs and axi-symmetric bodies with concen-
trated heat sources. In recent studies, Anilkumar and Roy
[4], and Roy and Anilkumar [5] have presented, respec-
tively, self-similar and semi-similar solutions of unsteady
mixed convection flows from a rotating cone in a rotating
fluid. In contrast, Kumari et al. [6] and Yih [7] have pre-
sented non-similar solutions to study the heat transfer
characteristics in unsteady mixed convection flows from a
vertical cone without and with porous media, respectively.
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Nomenclature

A surface mass transfer parameter
Cf local skin friction coefficient
Cp specific heat at constant pressure
f, F dimensionless stream function and axial velocity

component, respectively
g acceleration due to gravity
G dimensionless temperature
Grx Grashof number
k thermal conductivity
m exponent in the power law variation of the free

stream velocity
Nu local Nusselt number
Pr Prandtl number
Rex Reynolds number
t, t* dimensional and dimensionless times, respec-

tively
T temperature
u axial velocity component
U free stream velocity component
v radial velocity component
x axial coordinate
y transverse coordinate

Greek symbols

b volumetric coefficient of thermal expansion
c half angle of the vertical cone
� unsteady parameter
n similarity variable
g similarity variable
k buoyancy parameter
l dynamic viscosity
m kinematic viscosity
q density
/ function of t*

w stream function

Subscripts

e condition at the edge of the boundary layer
i initial condition
w, 1 conditions at the wall and infinity, respectively
n, g, t* denote the partial derivatives w.r. to these vari-

ables, respectively

Fig. 1. Physical model and co-ordinate system.
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In many practical problems, the flow could be unsteady
due to time dependent free stream velocity and there are
several transport processes with surface mass transfer
(i.e., injection or suction) in industry where the buoyancy
force arises from thermal diffusion caused by temperature
gradient. Therefore as a step towards the eventual develop-
ment on unsteady mixed convection flows, it is interesting
as well as useful to investigate the combined effects of ther-
mal diffusion and surface mass transfer on a vertical cone
where the free stream velocity varies arbitrarily with time.

The objective of the present analysis is to obtain non-
similar solution of an unsteady mixed convection flow over
a vertical cone with surface mass transfer (injection or suc-
tion). Non-similar solutions are obtained numerically by
solving a set of coupled non-linear partial differential
equation using an implicit finite difference scheme in com-
bination with the quasilinearization technique. Particular
cases of the present results have been compared with those
of Hering and Grosh [1], Himasekhar et al. [2], and Kumari
et al. [6].

2. Analysis

Consider a vertical circular cone with a half angle c
along which a forced flow moves parallel to the axis of
the cone with free stream velocity u1 and temperature
T1. The surface of the cone is at a uniform higher temper-
ature Tw, i.e., Tw > T1 and the forced flow is in upward
direction. The streamwise coordinate x is measured from
the apex of the cone along it’s generator, and the transverse
coordinate y is measured normal to it into the fluid, respec-
tively (see Fig. 1). Thermo-physical properties of the fluid
in the flow model are assumed to be constant except the
density variations causing a body force term in the momen-
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tum equation. The Boussinesq approximation is invoked
for the fluid properties to relate the density changes to tem-
perature changes and to couple in this way the temperature
field to the flow field. Under the above assumptions and
imposing Mangler’s transformation to reduce the axi-sym-
metric problem into a two-dimensional problem [8], the
continuity, momentum and energy equations governing
unsteady mixed convection flow along a vertical cone can
be written as

ou
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oy
¼ 0; ð1Þ
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The initial conditions are given by

uðx; y; 0Þ ¼ uiðx; yÞ; vðx; y; 0Þ ¼ viðx; yÞ;
T ðx; y; 0Þ ¼ T iðx; yÞ: ð4Þ

The boundary conditions are given by

uðx; 0; tÞ ¼ 0; vðx; 0; tÞ ¼ vwðxÞ;
T ðx; 0; tÞ ¼ T w ¼ Constant;

uðx;1; tÞ ¼ ueðx; tÞ ¼ UðxÞ/ðt�Þ ¼ u1xm=3/ðt�Þ;
T ðx;1; tÞ ¼ T1 ¼ Constant:

ð5Þ

Applying the following transformations:
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to Eqs. (1)–(3), it is found that Eq. (1) is satisfied identi-
cally, and Eqs. (2) and (3) reduce to
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where

Pr ¼ lCp

k
; Grx ¼

gbx3ðT w � T1Þ cos c
m2

;

Rex ¼
u1x
m

and k ¼ Grx

Re2
x

:

It may be noted that for m ¼ 3
2
, k becomes a constant and

numerical solutions are computed for different values of k
as discussed in Section 4.

Here n, g are the transformed co-ordinates; g1 is the
edge of the boundary layer; w and f are dimensional and
dimensionless stream functions, respectively; F and G are,
respectively, dimensionless velocity and temperature.

The boundary conditions reduce to

F ðn; 0; t�Þ ¼ 0; Gðn; 0; t�Þ ¼ 1 at g ¼ 0;

F ðn;1; t�Þ ¼ 1; Gðn;1; t�Þ ¼ 0 as g!1;
ð9Þ

where f ¼
R g
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The surface mass transfer parameter A > 0 or A < 0
according to whether there is a suction or injection. It is
assumed that the flow is steady at time t* = 0 and becomes
unsteady for t* > 0 due to the time dependent free stream
velocity ue(x,t) = U(x)/(t*) = u1xm/3/(t*), where /ðt�Þ ¼
1þ �t�2

; � > or < 0. Hence, the initial conditions (i.e., con-
dition at t* = 0) are given by the steady state equations
obtained from the Eqs. (7) and (8) by substituting
/ðt�Þ ¼ 1; d/

dt� ¼ F t� ¼ Gt� ¼ 0 when t* = 0. It may be noted
that the steady state equations with n = 0, k = 0 and m = 0
in the present problem are the same as those of Kumari
et al. [6].

The quantities of physical interest are as follows [9,10]:
The local skin friction coefficient is given by
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The local heat transfer rate at the wall in terms of Nusselt
number can be expressed as
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3. Method of solution

The set of non-linear coupled partial differential equa-
tions (7) and (8) along with the initial conditions obtained
from the corresponding steady state equations and bound-
ary conditions (9) represent a non-linear two point bound-
ary value problem for partial differential equations which is
solved by an implicit finite difference scheme in combina-
tion with the quasilinearization technique [11,12]. Quasilin-
earization technique can be viewed as a generalization of
the Newton–Raphson approximation technique in func-
tional space. An iterative sequence of linear equations are
carefully constructed to approximate the the non-linear
Eqs. (7) and (8) for achieving quadratic convergence and
monotonocity.

Applying quasilinearization technique [11,12], the non-
linear coupled partial differential equations (7) and (8)
are replaced by the following sequence of linear partial dif-
ferential equations:
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The coefficient functions with iterative index i are known
and the functions with iterative index i + 1 are to be deter-
mined. The boundary conditions become

F iþ1 ¼ 0; Giþ1 ¼ 1 at g ¼ 0;

F iþ1 ¼ 1; Giþ1 ¼ 0 at g ¼ g1;
ð14Þ

where g1 is the edge of the boundary layer. The coefficients
in Eqs. (12) and (13) are given by
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Since the method is described for ordinary differential
equations by Inouye and Tate [12] and also explained for
partial differential equations in a recent article by Roy
and Saikrishnan [13], it’s detailed description is not pre-
sented here for the sake of brevity. In brief at each iteration
step, the sequence of linear partial differential equations
(12) and (13) were expressed in difference form using cen-
tral difference scheme in the g� direction and backward
difference scheme in n� and t*� directions. The resulting
difference equations were then reduced to a system of linear
algebraic equations with a block tri-diagonal structure
which is solved by using Varga algorithm [14].

To ensure the convergence of the numerical solution to
exact solution, the step sizes Dg, Dn and Dt* have been opti-
mized and the results presented here are independent of the
step sizes at least upto the fourth decimal place. The step
sizes Dg, Dn and Dt* have been taken as 0.01, 0.02 and
0.01, respectively. A convergence criteria based on the rel-
ative difference between the current and previous iterative
values of the velocity and temperature gradients at the wall
are employed. When the difference reaches less than 10�4,
the solution is assumed to have converged and the iterative
process is terminated.

4. Result and discussion

Computations have been carried out for various values
of Pr(0.7 6 Pr 6 7.0), k(0 6 k 6 7) and A(�1.2 6 A 6

1.2). In all numerical computations m is taken as 3
2

and
the edge of the boundary layer g1 is taken between 3
and 5 depending on the values of parameters. The results
have been carried out for both accelerating ð/ðt�Þ ¼
1þ �t�2

; � > 0;06 t� 6 1Þ and decelerating ð/ðt�Þ ¼ 1þ �t�2
;

� < 0;06 t� 6 1Þ free stream velocities of the fluid. In order
to verify the correctness of the procedure, solutions have
been obtained for the steady state case with n = 0, k = 0
and m = 0 to compare the velocity and temperature pro-
files (F and G) with those of Kumari et al. [6] for different
values of Prandtl number, Pr = 0.733 and 6.7. Steady state
results are also compared for various values of Prandtl
numbers with those of Hering and Grosh [1], and Himase-
khar et al. [2]. The results are found in an excellent agree-
ment and only some of the comparisons are shown in Table
1 and in Fig. 2 to brief the manuscript.

The effects of buoyancy parameter k, the axial distance n
and Prandtl number Pr on velocity and temperature pro-
files (F,G) for accelerating flow /ðt�Þ ¼ 1þ �t�2

; � > 0 are
displayed in Figs. 3 and 4. Also, the effects of n and k on
the skin friction and heat transfer coefficients ðRe1=2

x Cf ;
Re�1=2

x NuÞ are presented in Fig. 5. The action of the buoy-
ancy force shows the overshoot in the velocity profiles (F)
near the wall for lower Prandtl number (air, Pr = 0.7)
but for higher Prandtl number (water, Pr = 7.0) the veloc-
ity overshoot in F is not observed as shown in Fig. 3. The
magnitude of the overshoot increases with buoyancy
parameter k but decreases with the increase of time t*.
The reason is that the buoyancy force (k) effect is larger



Table 1
Comparison of the steady state skin friction and heat transfer parameter
results (f 0 0(0), � G0(0)) with those of Hering and Grosh [1] and Himase-
khar et al. [2] for m = 0

Pr k Himasekhar et al. [2] Present results

�G0(0) f 0 0(0) �G0(0) f 0 0(0)

0.7 1.0 0.6120 2.2012 0.6125 2.2019
0.6120a 2.2078a

10 1.0097 8.5041 1.0105 8.5049
1.0173a 8.5246a

1 1.0 0.7010 2.0886 0.7015 2.0901
10 1.1230 7.9425 1.1294 7.9445

10 1.0 1.5662 1.5636 1.5785 1.5658
10 2.3580 5.0821 2.3587 5.0861

a Values taken from Hering and Grosh [1].
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for Pr = 0.7 (air) due to low viscosity of the fluid which
enhances the velocity within the boundary layer as the
assisting buoyancy force acts like a favorable pressure gra-
dient and the velocity overshoot occurs. For Pr = 7.0
(water) the velocity overshoot is not present because water
is more viscous fluid which makes it less sensitive to the
buoyancy parameter k. The effect of k is comparatively less
on the temperature profiles (G) as shown in Fig. 3. More-
over, Fig. 3 shows that the increase of Prandtl number
Pr results into thinner thermal boundary layer as the higher
Prandtl number fluid has a lower thermal conductivity.

Fig. 4 shows that due to the increase in axial distance n,
the steepness in both the velocity and temperature profiles
(F,G) near the wall increases and consequently reduce the
thicknesses of both the velocity and thermal boundary lay-
ers. Further, it may be pointed out that the magnitude of
the velocity overshoot slightly decreases with the increase
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of n as can be seen in Fig. 4. Thus for the increase of n i.e.,
at a distant axial location, the effect of buoyancy parameter
k on velocity profiles (F) is small so that it does not cause
the velocity profiles to increase the magnitude of over-
shoots further in buoyancy aided flows. For all the cases
both the profiles (F,G) at a later time t* = 1 are compara-
tively more steeper near the wall than those at the initial
time t* = 0, which can be seen in Figs. 3 and 4. Results pre-
sented in Fig. 5 indicates that the skin friction and heat
transfer coefficients ðRe1=2

x Cf ;Re�1=2
x NuÞ increase with the

increase of buoyancy parameter (k). The physical reason
is that the positive buoyancy force (k) implies favorable
pressure gradient and the fluid gets accelerated which
results in thinner momentum and thermal boundary layers.
Consequently, the skin friction ðRe1=2

x CfÞ and the Nusselt
number ðRe�1=2

x NuÞ also increase with the increase of k at
any time (t*) as shown in Fig. 5. For example for
Pr = 0.7, A = 1 at time t* = 0.5, Fig. 5 shows that the per-
centage increase in Re1=2

x Cf and Re�1=2
x Nu for the increase of

k from 1 to 5 are, approximately, 43.54% and 5.4%,
respectively.

The effect of surface mass transfer parameter A (A > 0
or A < 0) on the velocity and temperature profiles (F,G)
for /ðt�Þ ¼ 1þ �t�2

, � = 0.5, Pr = 0.7 and n = 1 are pre-
sented in Fig. 6. In addition, Fig. 7 displays the effect of
A on skin friction and heat transfer coefficients (Re1=2

x Cf ,
Re�1=2

x Nu) with the increase of time t* from 0 to 1. Fig. 7
shows that for all time t*, both skin friction and heat trans-
fer coefficients (Re1=2

x Cf , Re�1=2
x Nu) increase with suction

(A > 0) but decrease with the increase of injection (A < 0).
In case of injection, the fluid is entered into the boundary
layer from the surface causing reduction in velocity gradi-
ent as it tries to maintain the same velocity over a very
small region near the surface and the effect is reverse in case
of suction. For example, for Pr = 0.7, n = 1 at t* = 0.5
both the Re1=2

x Cf and Re�1=2
x Nu increase, approximately,

by 33.1% and 86.07%, respectively, with the increase of
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suction from A = 0 to A = 1. On the other hand, for
Pr = 0.7, n = 1 at t* = 0.5 due to increase of injection from
A = 0 to A = � 1 both the Re1=2

x Cf and Re�1=2
x Nu decrease

26.81% and 59.66%, respectively. The graphs of the veloc-
ity and temperature profiles (F,G) versus g in Fig. 6 show
that the injection (A < 0) causes a decrease in the steepness
of the profiles F and G near the wall but steepness of the
profiles (F,G) increase with suction.

Fig. 8 displays the effect of Prandtl number for acceler-
ating and decelerating free stream flows ð/ðt�Þ ¼ 1þ �t�2

;
� ¼ 0:5 and � ¼ �0:5Þ on the skin friction and heat trans-
fer coefficients ðRe1=2

x Cf ;Re�1=2
x NuÞ where k = 4, n = 0.5 and

A = 0. It is found from Fig. 8 that the skin friction coeffi-
cient decreases with increase of Prandtl number because the
higher Prandtl number fluid (water, Pr = 7.0) means more
viscous fluid which increases the boundary layer thickness
and consequently reduce the shear stress. On the other
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hand, Fig. 8 reveals that the surface heat transfer rate
increases significantly with Pr as Pr = 7 has a lower ther-
mal conductivity which results in thinner thermal bound-
ary layer (see Fig. 3 for temperature profile G) and hence
a higher heat transfer rate at the wall. To be more specific
for k = 4 at t* = 0.5, as Pr increases from 0.7 to 7.0, Re1=2

x Cf

decreases by about 16.89% and Re�1=2
x Nu increases by

125.36%, respectively, for accelerating flow. Thus, the heat
transfer rate at the wall can be reduced by using a low Pra-
ndtl number fluid such as air (Pr = 0.7). In case of acceler-
ating flow, Fig. 8 shows that both skin friction and heat
transfer coefficients (Re1=2

x Cf , Re�1=2
x Nu) increase with time

t* and the effect of the time variation is found to be more
pronounced on the skin friction coefficient than on heat
transfer rate, because the change in the free stream velocity
with the time strongly affects the velocity component. For
example, for Pr = 7.0 the values of Re1=2

x Cf and Re�1=2
x Nu

increase by about 58.43% and 7.64%, respectively, when
the time t* increases from 0 to 1. In contrast, both
Re1=2

x Cf and Re�1=2
x Nu decrease with time t* for the case of

decelerating flow as seen in Fig. 8. In particular for
Pr = 7.0, the values of Re1=2

x Cf and Re�1=2
x Nu decrease by

about 41.29% and 5.83%, respectively, with the increase
of time t* from 0 to 1.

5. Conclusions

Non-similar solution of an unsteady mixed convection
flow over a vertical cone has been obtained for both accel-
erating and decelerating free stream velocities. The results
pertaining to the present study indicate that the skin fric-
tion coefficient is significantly affected by the time depen-
dent free stream velocity distributions whereas the heat
transfer coefficient is comparatively little affected by it. It
is found that the buoyancy force (k) enhances the skin
friction coefficient and Nusselt number. In the buoyancy
aiding flow (k > 0), the velocity profiles exhibit velocity
overshoot for lower Prandtl number. Further, the buoy-
ancy parameter (k) and injection parameter (A < 0) tend
to increase its magnitude but the suction parameter
(A > 0) and axial distance n tend to reduce the magnitude
of the velocity overshoot. For a fixed buoyancy force, the
Nusselt number increases with Prandtl number but the skin
friction coefficient decreases. In fact, the increase in Prandtl
number causes a significant reduction in the thickness of
thermal boundary layer. As expected, both skin friction
and heat transfer coefficients increase with suction but
decrease with the increase of injection. Moreover, it is
noted that the suction parameter (A > 0) and the axial dis-
tance steepen both the velocity and temperature profiles,
but injection (A < 0) does the reverse.
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